Quantum Superpositions of Causal Structures

From Foundations to New Technologies

  • Giulio Chiribella Department of Computer Science, HKU
Keywords: quantum information, quantum causality, indefinite causal order, quantum SWITCH, foundations of quantum mechanics

Abstract

This presentation provides a non-technical overview of the notion of quantum superposition of causal structures, of its applications, and of its proposed physical realizations. The conceptual underpinning for these investigations is a view of quantum theory as a new kind of probability theory. At the axiomatic level, the principles of this new kind of probability theory suggest new causal relations that have no analogue in the classical world. These new causal relations are a potential resource for new technologies, including computation and communication technology.

Downloads

Download data is not yet available.

References

Abbott A. A., Wechs J., Horsman D., Mhalla M., and Branciard C. (2018). Communication through coherent control of quantum channels, arXiv:1810.09826.
Araújo M, Costa F, Brukner Č. (2014). Computational advantage from quantum-controlled ordering of gates. Physical Review Letters 113, 250402.
Araújo M,, Branciard C., Costa F., Feix A., Giarmatzi C., and Brukner Č (2015). Witnessing causal nonseparability. New Journal of Physics 17, 102001.
Barnum, Müller, Ududec (2014). Higher-order interference and single-system postulates characterizing quantum theory. New Journal of Physics 16, 123029.
Bell J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1, 195.
Birkhoff G. and von Neumann J. (1936). The logic of quantum mechanics. Annals of Mathematics 37, 823.
Bose S., Mazumdar A., Morley G. W., Ulbricht H., Toroš M., Paternostro M., Geraci A. A., Barker P. F., Kim M. S., Milburn G. (2017). Spin entanglement witness for quantum gravity. Physical Review Letters 119, 240401.
Brassard G. (2005). Is information the key? Nature Physics 1, 2.
Chiribella G., D’Ariano G. M., and Perinotti P. (2011). Informational derivation of quantum theory. Physical Review A 84, 012311.
Chiribella G. (2012). Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Physical Review A(R) 86, 040301.
Chiribella G., D’Ariano G. M., and Perinotti P. (2012). Quantum theory, namely the pure and reversible theory of information. Entropy 14, 1877.
Chiribella G, D’Ariano G. M., Perinotti P, and Valiron B (2013). Quantum computations without definite causal structure. Physical Review A 88, 022318.
Chiribella G, and Yuan X (2013). Quantum theory from quantum information: the purification route. Canadian Journal of Physics, 91, 475.
Chiribella G, and Scandolo C. M. (2015). Conservation of information and the foundations of quantum mechanics. EPJ Web of Conferences 95, 03003.
Chiribella G. and Spekkens R. W., eds. (2015). Quantum Theory: Informational Foundations and Foils. Dordrecht: Springer.
Chiribella G., Banik M., Bhattacharya S. S., Guha T., Alimuddin M., Roy A., Saha S., Agrawal S., Kar G. (2018). Indefinite causal order enables perfect quantum communication with zero capacity channel. arXiv:1810.10457.
Chiribella G. and Kristjánsson H. (2019). Quantum Shannon theory with superpositions of trajectories. Proceedings of the Royal Society A 475, 20180903.
Coecke B., Moore D., and Wilce A., eds. (2000). Current research in operational quantum logic. Dordrecht: Springer.
Dakic B. and Brukner Č. (2011). Quantum Theory and Beyond: Is Entanglement Special?, in H. Halvorson (Ed.), Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge: Cambridge University Press.
D’ Ariano G. M., Chiribella G., and Perinotti P. (2017). Quantum Theory from First Principles. Cambridge: Cambridge University Press.
Feynman R. P., Leighton R. B., and Sands M. (1965). The Feynman Lectures on Physics, Vol. 3. Reading (Mass): Addison-Wesley.
Ebler D., Salek S., and Chiribella G. (2018). Enhanced communication with the assistance of indefinite causal order. Physical Review Letters 120, 120502.
Fuchs C. A. (2003). Quantum mechanics as quantum information, mostly. Journal of Modern Optics 50, 987.
Goswami K., Giarmatzi C., Kewming M., Costa F., Branciard C., Romero J., White A. G. (2018). Indefinite causal order in a quantum switch. Physical Review Letters 121, 090503.
Goswami K., Romero J., and White A. G. (2018). Communicating via ignorance. arXiv:1807.07383.
Guérin P. A., Rubino G., Brukner Č (2019). Communication through quantum-controlled noise. Physical Review A 99, 062317.
Guo Y., Hu X. M., Hou Z. B., Cao H., Cui J. M., Liu B. H., Huang Y. F., Li C. F., Guo G. C., and Chiribella G. (2020). Experimental transmission of quantum information using a superposition of causal orders. Physical Review Letters 124, 030502.
Hardy L. (2001). Quantum theory from five reasonable axioms. quant-ph/0101012.
Kristjánsson H., Chiribella G., Salek S., Ebler D., and Wilson M. (2020). Resource theories of communication. New Journal of Physics 22 073014.
Masanes L. and Müller M. P. (2011). A derivation of quantum theory from physical requirements. New Journal of Physics 13, 063001.
Masanes L., Müller M. P., Augusiak R., and Pérez-García D. (2013). Existence of an information unit as a postulate of quantum theory. Proceedings of the National Academy of Sciences 110, 16373.
Salek S., Ebler D., and Chiribella G. (2018). Quantum communication in a superposition of causal orders. arXiv:1809.06655.
Paunković N. and Vojinović M. (2020). Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders. Quantum 4, 275.
Procopio L. M., Moqanaki A., Araújo M., Costa F., Calafell I. A., Dowd E. G., Hamel D. R., Rozema L. A. , Brukner Č., and Walther P. (2015). Experimental superposition of orders of quantum gates. Nature communications 6, 1.
Rubino G., Rozema L. A., Feix A., Araújo M., Zeuner J. M., Procopio L. M., Brukner Č., and Walther P. (2017). Experimental verification of an indefinite causal order. Science Advances 3, 1602589.
Schrödinger, E. (1935). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807.
Wei K., Tischler N., Zhao S. R., Li Y. H., Arrazola J. M., Liu Y., Zhang W., Li H., You L., Wang Z., Chen Y.A. (2019). Experimental quantum switching for exponentially superior quantum communication complexity. Physical Review Letters 122, 120504.
Zych M., Costa F., Pikovski I., and Brukner Č. (2019). Bell’s theorem for temporal order. Nature communications 10, 1.
Published
2020-12-17
How to Cite
Chiribella, G. (2020). Quantum Superpositions of Causal Structures. Critical Hermeneutics, 4(special II), 1-24. https://doi.org/10.13125/CH/4492