
Critical Hermeneutics, 4(1), 2020 Received: 8/3/2020
Biannual International Journal of Philosophy Accepted: 25/8/2020
http://ojs.unica.it/index.php/ecch/index Published: 9/10/2020
ISSN 2533-1825 (on line); DOI 10.13125/CH/4317

Digital Reflective Judgement:

A Kantian Perspective on Software

LUCA M. POSSATI

Abstract

In this paper, I formulate an analysis of software from a Kantian

perspective. The central thesis is that software is a form of reflective

judgment, namely, “digital reflective judgement”. This transcendental

approach allows us to overcome the limitations of an overly dualistic

and over-intellectualized conception of software. The paper is

structured as follows. In section 2, I develop a series of criticisms of

Turner’s (2018) approach. Turner defines software as a

computational artifact and distinguishes two series of its properties:

functional and structural. I argue that this distinction cannot be

applied to software and that Turner’s approach cannot explain the

essence of software, namely, its twofold nature—abstract and

concrete—at the same time. Moreover, Turner’s perspective is

characterized by some philosophical limitations. In sections 3 and 4, I

present a proposed definition of software from a transcendental

Kantian perspective, that is, by using the concept of reflective

judgment. In section 5, I explain why and how we can consider

software as a new form of reflective judgment. This judgement is

based on a specific type of imaginative act that mediates between

physical implementations and mathematical structures. In section 6,

through a parallelism between software and the Kantian judgment of

taste, I hold that the condition of possibility of software is the

principle of finality, which is shown in the design. Software is, above

Luca M. Possati, Digital Reflective Judgement

2

all, a design act. In the conclusion, I show why this approach

overcomes Turner’s limitations and is much closer to how

programmers conceive their work.

Keywords: Software, Reflective Judgement, Kant

1. Introduction

The central issue of this paper can be described in the following way:

A central topic in the philosophy of computer science con-

cerns the ontological status of programs. While algorithms

are generally taken to be mathematical objects, the nature

of programs is less clear, although semantic concerns are

central: their ontological status is closely allied to their se-

mantic status. In particular, a semantic account of pro-

gramming languages is taken to involve a machine of some

kind. But what kind of machine? Is it abstract or concrete? If

a physical machine is taken to fix the meaning, then seman-

tically and ontologically, programs are primarily physical de-

vices. Conversely, if an abstract machine is employed, then

programs are abstract in nature. However, the nature of

programs is not so easily and neatly settled: both abstract

and physical devices seem to be involved (Turner 2018:

15).

The central thesis of this paper is that the ontological issues re-

lated to software have to be re-formulated from a Kantian perspec-

tive. I propose a thinking of software as a form of reflective judg-

ment. I claim that this transcendental approach will allow us to over-

come the limitations of a dualistic and over-intellectualized concep-

tion of software as well as understand other dimensions of software

Critical Hermeneutics, 4 (2020)

3

that a merely technical explanation invariably misses. My goal is not

to give a comprehensive definition of software. I think that software

is an overly elusive and complex phenomenon, and a univocal defini-

tion inevitably makes us lose its multistability (see Ihde 1990). In-

stead, my goal is to define the conditions of a philosophical analysis

of software as a way of understanding this multistability.

The paper is structured as follows. In section 2, I develop a

series of criticisms of Turner’s (2018) approach. Turner defines

software as a computational artifact and distinguishes two series of

its properties: functional and structural. I argue that this distinction

cannot be applied to software and that Turner’s approach cannot

explain the essence of software, namely, its twofold nature—abstract

and concrete—at the same time. Moreover, Turner’s perspective is

characterized by some philosophical limitations.

Consequently, in section 3 and 4, I present a proposed definition

of software from a transcendental Kantian perspective, i.e., by using

the concept of reflective judgment. Turner fails to solve the question

of the ontological status of software because of the overly strict

manner in which he connects ontology and semantics. Reformulating

the ontological question in transcendental and aesthetic terms gives

us the possibility of escaping Turner’s limitations and explaining the

plastic and dynamic nature of software.

In section 5, I explain why and how we can consider software as

a new form of reflective judgment. My claim is that this judgement is

based on a particular type of imaginative act that mediates between

physical implementations and mathematical structures. This

imaginative act is based on some synthetical structures, i.e., specific

forms of writing. Software programming is essentially an art of

writing.

In section 6, through a parallelism between software and the

Kantian judgment of taste, I hold that the condition of possibility of

Luca M. Possati, Digital Reflective Judgement

4

software is the principle of finality, which is shown in the design.

Software is, above all, a design act. In the conclusion, I show why

this approach overcomes Turner’s limitations and is much closer to

how programmers conceive their work.

2. The Problem of the Synthesis

According to Turner (2018),

Languages and machines represent the two ends of the

computational spectrum: the abstract and the physical.

They come together at the digital interface, the very lowest

level in the computational realm. Digital circuits are em-

ployed to store, communicate, and manipulate data. Flip-

flops, counters, converters, and memory circuits are com-

mon examples. Their building blocks are called gates, the

most central of which correspond to arithmetic and Boolean

operations. These are simple logic machines, so named be-

cause they are intended to represent some form of numeri-

cal or Boolean operation. More complex machines are built

from them by connecting and composing them in various

ways, where the most general-purpose register-transfer log-

ic machine is a computer.

Even though Turner’s book remains an important reference point

in computer science philosophy, this view appears to be

oversimplified. I contend that Turner does not grasp the complexity of

the philosophical problem underlying his premise. Let us try to

correctly formulate this problem: how is the a priori synthesis of

Boolean operations and machines possible? This synthesis is a priori

because it is the condition of possibility of all our digital experiences

and is independent of these experiences (the computer also acts in

Critical Hermeneutics, 4 (2020)

5

my absence and performs these operations). Moreover, what does the

synthesis between the machine, Boolean operations, and user

experience guarantee? How can we know that this correspondence

takes place?

Boolean logic truth tables give us a functional description of a

digital circuit. This description is formulated in a formal language and

says how the digital circuit should work. However, the digital circuit is

also a physical object, i.e., a set of material and electrical pulses. As a

physical object, the electrical circuit has a series of structural

properties that tell us what it is and what it does (Turner 2018, 33),

but the functional and physical properties are incompatible.1 In fact,

the functional properties “provide no account of how the actual

electronic devices are to be built; they do not describe how the

computations are to be carried out. They are functional specifications,

not [physical] ones, and they cannot be easily turned into the latter.

They tell us what the actual physical device should do: the what not

the how” (Turner 2018: 33). Functional and physical properties are

also incompatible with the characteristics of user experience, which

incidentally may have knowledge of neither of them.2

In chapter five of his book, Turner talks about software ontology.

He distinguishes between functional description (specifications),

structural description (HL languages), and physical description

(implementation). According to him, “in the case of programs,

1 “Technical artifacts are, at least prima facie, always physical objects, but they are

also objects that have a certain function. Looked upon merely as physical objects

they fit into the physical or material conception of the world. Looked upon as func-

tional objects, however, they do not. The concept of function does not appear in

physical description of the world; it rather belongs to the intentional conceptualiza-

tion. Technical artifacts thus have a dual nature: they cannot exhaustively be de-

scribed within the physical conceptualization, since this has no place for their func-

tional features, nor can they be described exhaustively within the intentional con-

ceptualization, since their functionality must be realized in an adequate physical

structure” (Kroes and Meijers 2002).
2 Turner talk also about “structural properties” defined by a designer using another

specific formal language.

Luca M. Possati, Digital Reflective Judgement

6

implementation is a mechanism that, given a symbolic program as

input, returns a physical process” (49). As computational artifacts,

programs mediate between functional and physical properties, yet

Turner fails to explain how.

He does not see a problem in this transition from the symbolic to

the physical. Software is a complex abstract structure, made up of

many levels and languages and levels of abstractions, which is

capable of producing a physical effect. It is a language that does what

it says. It has a performativity that is independent of any human

intervention. How, therefore, is it possible for a symbolic apparatus to

produce a physical effect? How can an abstract mathematical

structure (see Indurkhya 2017) implement physical operations?

Turner limits himself to quoting Colburn’s (1999) well-known thesis

about “harmony”, according to which there is a “fundamental

harmony” between the physical and the symbolic in the program.

However, this is not an explanation at all. In Colburn’s vision, the

programmer appears like the deus ex machina that harmonizes the

symbolic and the physical, allowing the machine to function. Colburn

(1999: 17) speaks of “pre-established harmony”, namely, a

parallelism between the code and machine, established not by God

but by the programmer. “Programmers today can live almost

exclusively in the abstract realm of their software descriptions, but

since their creations have parallel lives as bouncing electrons, theirs

is a world of concrete abstractions” (18). Turner seems to actualize

Colburn’s solution by saying that, “presumably, it is via the semantics

that the programmer is able to design the program from the

specification, and it is via the semantics that the programmer is able

to explain why and justify the claim that the program meets the

specification” and, so, the implementations (Turner 2018: 51). He

distinguishes three levels—syntax, semantics, and implementation—

and thinks that the passage from the first to the third is due to the

Critical Hermeneutics, 4 (2020)

7

second.

Let us consider Turner’s (99–100) example. We have the

following formula:

A: = 13 + 74

This string of code can receive a “physical interpretation” that

will have the following form:

physical memory location A receives the value of physically

computing 13 plus 74.

However, what does “physical interpretation” mean? In reality,

this interpretation is just another linguistic formulation of that string

of code, i.e., its translation into another language. That string of code

corresponds to a certain state of the CPU and, therefore, to a series

of operations, i.e., physical states—what the machine actually does.

The correspondence is ensured by the programmer’s semantic

choices. Nevertheless, as Turner claims, a semantic explanation

concerns only the functional level; it cannot tell us anything about the

physical operations of the machine. A physical explanation concerns

only the structural and physical levels, i.e., how the machine

effectively acts, and it cannot tell us anything about how the machine

should act. Neither the functional nor the structural levels have the

resources to explain their connection. In other words, the connection

sought can be neither functional nor structural nor physical. Turner

(101) limits himself to saying that “the physical implementation is

subject to the abstract interpretation, and the meaning of the

construct is given by the abstract account alone”. He still does not see

the complexity of the problem of the connection of levels or of the

relationship between the different levels and user experience.

I make four fundamental criticisms of Turner’s approach:

• He does not consider the problem of the interaction, i.e.,

the relation with user experience;

Luca M. Possati, Digital Reflective Judgement

8

• The basis of his theory is an ontology of the thing and not

of the process—for this reason, he defines software as an object,

an artifact—but I do not think that this is appropriate to explain

software;

• His is an excessive intellectualization of software.

Let us try to clarify the problem. We have three distinct

levels:

The functional level → formal syntax and semantics

The physical level/1 → implementation/problem-solving

The physical level/2 → user experience.

Neither a monistic solution (all levels can be reduced to one;

they form a unitary whole) nor a dualistic solution (the physical and

abstract are two distinct and non-communicating levels) appear

satisfactory. If we choose the first solution, we have to explain the

differences between these levels. If we choose the second way, we

must explain the unity of these levels. Turner chooses the second way,

which is the reason he is forced to invoke an inexplicable “harmony”.

He also refers to Landin’s correspondence principle (170–171), but

this changes nothing. Separating the functional level from the

physical level is only an intellectual abstraction. All the levels are

connected in the digital experience: user experience is a continuum.

When I use my laptop, I do not have many different experiences—

one of the functional level, another of the structural level, another of

the physical machine, etc. My digital experience is uniform. Thus, my

question is: how is this continuum possible? My belief is that we need

to re-formulate the ontological question of software in a

transcendental way. In the next sections, I will try to develop this

approach by following the analogy between software and the Kantian

reflective judgment.

Critical Hermeneutics, 4 (2020)

9

3. The Kantian Reflective Judgment

According to Kant, a “judgment” (Urteil) is a specific kind of

“cognition” (Erkenntnis), i.e., a conscious mental representation of an

object (Critique of the Pure Reason, A320/B376).3 This representation

has a synthetic form: it unifies and organizes raw, unstructured

sensory data according to universal concepts, rules, or principles.

Judgement is essentially the faculty of thinking of the “particular”

(the representation of a singular thing) as being contained under the

“universal” (the general representation). This synthesis is the

characteristic output of the “power of judgment” (Urteilskraft). The

power of judgment is a cognitive “capacity” (Fähigkeit), more

specifically, a spontaneous and innate cognitive capacity. By virtue of

this, it is the “faculty of judging” (Vermögen zu urteilen) (A69/B94),

which is also the same as the “faculty of thinking” (Vermögen zu

denken) (A81/B106). It is a controverted question whether, according

to Kant, there is only one kind of synthesis or many different kinds.

Moreover, terms such as “spontaneity” or “concept” can have

different meanings in Kant’s works. These issues are closely linked to

the recent debate about Kant’s conceptualism vs. Kant’s non-

conceptualism in relation to his theory of judgment and the ensuing

implications for interpreting and critically evaluating his

transcendental idealism and the “Transcendental Deduction of the

Pure Concepts of the Understanding” (see Hanna 2001, 2006, 2005,

2017; Land 2011, 2015, 2016; Ginsborg 2006). However, I do not

want to tackle these issues here.

I want to stress three points. First, for Kant, judgments are

essentially propositional cognitions—from which it immediately

follows that rational humans are, more precisely, propositional

3 I quote using the relevant volume and page number from the standard

“Akademie” edition of Kant’s works: Kants Gesammelte Schriften, edited by the

Königlich Preussischen (now Deutschen) Akademie der Wissenschaften (Berlin: G.

Reimer [now de Gruyter], 1902–).

Luca M. Possati, Digital Reflective Judgement

10

animals. The connection between judgment and language is,

therefore, essential.

Second, Kant distinguishes the logical form and the propositional

content of a judgment. The logical forms are summarized in the

“table of judgements” (Critique of the Pure Reason, A52–55/B76–79).

The propositional contents, which are more fundamental than the

logical forms, are classified according to two conceptual couples: a

priori/a posteriori, analytical/synthetical. 4 Briefly, the propositional

content of a judgment can vary along at least three dimensions: (1)

its relation to sensory content, (2) its relation to the truth-conditions

of propositions, and (3) its relation to the conditions for objective

validity.5

Third, Kant distinguishes between propositional contents and the

use of propositional contents. It is possible for a rational subject

to use the same propositional content in different ways. What does

this mean? The fundamental difference is that between (a) theoretical

use and (b) non-theoretical use. The first use aims to formulate true

propositions about the world in order to obtain some knowledge, i.e.,

science. The second use does not aim to formulate true propositions

about the world; thus, its aim is pragmatic, moral, aesthetic, or

teleological.

To specify the distinction between theoretical and non-theoretical

4 For the meaning of these expressions in Kant, see Eisler (1994: 48–54). For Kant,

there are three types of judgment: analytical a priori, synthetic a posteriori, and

synthetic a priori (see Eisler 1994, 585ss). The supreme principle of all synthetic

judgments is that “every object is subject to the necessary conditions of the

synthetic unity of the different intuitions in a possible experience. […] The

conditions of the possibility of experience in general are at the same time

conditions of the possibility of the objects of experience, and for this they have an

objective validity in a synthetic judgment a priori” (AK III 39-40); “All analytical

judgments rest entirely on the principle of contradiction and are by nature a priori

knowledge […]” (AK IV, 266-267).
5 I am aware that this description is schematic and does not show the real

complexity of Kant’s thought on this topic. However, what interests me in this

section is to highlight only the fundamental points of Kant’s theory of judgment and

then focus on the distinction between determinant and reflective judgment.

Critical Hermeneutics, 4 (2020)

11

uses of propositional contents, Kant introduces the distinction

between “determining” judgment and “reflective” judgment. In the

first “Introduction” to The Critique of Judgment (1790), he writes:

Judgement in general is the faculty of thinking the particular

as contained under the universal. If the universal (the rule,

principle, or law) is given, then the judgement which

subsumes the particular under it is determining. This is so

even where such a judgement is transcendental and, as

such, provides the conditions a priori in conformity with

which alone the subsumption under that universal can be

effected. If, however, only the particular is given and the

universal has to be found for it, then the judgement is

simply reflective (Kant 2016: 53).

Here, Kant develops some remarks about the regulative use of

the ideas of reason, which appeared in the first Critique’s Appendix to

the “Transcendental Dialectic”, in particular, the distinction between

“apodictic” and “hypothetical” uses of judgment (A647/B675). The

difference between the determining and reflective uses of a judgment

has to do with the way in which the synthetical structure of the

judgment is interpreted. The determining use presupposes a high-

order representation under which to subsume the particular. It

determines an individual or narrower concept by using a given

general “determinable” concept or principle. The reflective use follows

the opposite way. It presupposes a particular individual or narrower

concept and advances from it toward a universal or more general

concept. Thus, the reflective judgment directly invokes the cognitive

subject’s ability to form higher-order representations through the act

of reflection (Überlegung) and, consequently, to be rationally self-

conscious or apperceptive. The aesthetic judgment (the judgement of

Luca M. Possati, Digital Reflective Judgement

12

taste) and the teleological judgment are expressions of the reflective

use of propositional contents. It is worth reading the entire passage

from the first “Introduction” to The Critique of Judgment:

The determining judgement determines under universal

transcendental laws furnished by understanding and is

subsumptive only; the law is marked out for it a priori, and

it has no need to devise a law for its own guidance to enable

it to subordinate the particular in nature to the universal.

But there are such manifold forms of nature, so many

modifications, as it were, of the universal transcendental

concepts of nature, left undetermined by the laws furnished

by pure understanding a priori as above mentioned, and for

the reason that these laws only touch the general possibility

of a nature (as an object of sense), that there must needs

also be laws in this behalf. These laws, being empirical, may

be contingent as far as the light of our understanding goes,

but still, if they are to be called laws (as the concept of

nature requires), they must be regarded as necessary on a

principle, unknown though it be to us, of the unity of the

manifold. The reflective judgement which is compelled to

ascend from the particular in nature to the universal stands,

therefore, in need of a principle. This principle it cannot

borrow from experience, because what it has to do is to

establish just the unity of all empirical principles under

higher, though likewise empirical, principles, and thence the

possibility of the systematic subordination of higher and

lower. Such a transcendental principle, therefore, the

reflective judgement can only give as a law from and to

itself. It cannot derive it from any other quarter (as it would

then be a determining judgement). Nor can it prescribe it to

Critical Hermeneutics, 4 (2020)

13

nature, for reflection on the laws of nature adjusts itself to

nature, and not nature to the conditions according to which

we strive to obtain a concept of it – a concept that is quite

contingent in respect of these conditions (Kant 2016: 23).

Aesthetic and teleological judgments can only be reflective: they

do not produce knowledge.6 While determining judgment is based on

several a priori principles, i.e., the principles of pure reason

(transcendental logic), which are the basis of objective knowledge,

reflective judgment has only one a priori transcendental principle—

finality—which is universal and subjective at the same time.

Therefore, reflective judgment interprets the particular case

according to finality. It can have two forms: 1) in the first case, the

principle of finality is applied to the relationship between the subject

and the representation of the particular case and, therefore, to the

spontaneous agreement between imagination and understanding,

which produces a delight—interpreted as a sign of finality; 2) in the

second case, finality is applied to the organization of nature through

understanding and reason. In this case, it can only be subjective

because it cannot be the object of a possible experience, i.e., a

phenomenon. Through the faculty of judgement, nature is

represented as if a supreme intelligence had arranged the unity of all

empirical laws.

However, the principle of finality is not to be confused with

practical finality, as we can read in the first “Introduction” to The

Critique of Judgment:

6 One must not make the mistake of thinking that the Critique of Pure Reason deals

only with determining judgment and, instead, that the Critique of the Judgment

deals only with reflective judgment as if, in Kant, there was a clear distinction

between these two uses of propositional contents. It must be emphasized that Kant,

in the third Critique, defines aesthetic and teleological judgments as only reflexive

in the sense that these judgments are entirely reflective. Many other judgments are

determining and reflective at the same time (Longuenesse 1993: 208–215).

Luca M. Possati, Digital Reflective Judgement

14

[…] this transcendental concept of a finality of nature is

neither a concept of nature nor of freedom, since it

attributes nothing at all to the object, i.e., to nature, but

only represents the unique mode in which we must proceed

in our reflection upon the objects of nature with a view to

getting a thoroughly interconnected whole of experience,

and so is a subjective principle, i.e., maxim, of judgement.

For this reason, too, just as if it were a lucky chance that

favoured us, we are rejoiced (properly speaking, relieved of

a want) where we meet with such systematic unity under

merely empirical laws: although we must necessarily

assume the presence of such a unity, apart from any ability

on our part to apprehend or prove its existence (emphasis

added) (Kant 2016: 46).

The principle of finality is the essence of the faculty of judgment

as an autonomous faculty with respect to understanding and practical

reason. In the principle of finality, the faculty of judgment gives itself

a law in order to think about the unity of nature. The faculty of

judgment presupposes this law in order to obtain an overall view of

nature that is acceptable to us. Therefore, finality has a hypothetical

nature. In Logik (§81), Kant describes finality as the “analogon” of

the logical universality. Thus, the faculty of judgment produces

inductive and analogical reasoning.7

Even if it does not have a cognitive function, reflective judgment

plays a crucial role in science from a heuristic and methodological

point of view. In the third Critique, Kant emphasizes the need for

7 The problem of analogy in Kant is very complex. I do not want to tackle this issue

here. In Kant, there are several ways in which the term “analogy” is used. I would

say that we can distinguish three main meanings: theological, cognitive (the

analogies of experience), and mathematical. See Callanan (2008).

Critical Hermeneutics, 4 (2020)

15

teleological judgment for the study of biology. If the understanding

explains a coherent physical science based on universal laws, it is not

sufficient to explain the smallest and simplest living organisms. The

life of a worm or the growth of a blade of grass can never be

understood starting from a determining judgment; it can only be

understood through reflective judgment. Notions such as “gender” or

“species” have a heuristic and methodological value to the extent that

they are used in connection with determining judgment. They cannot

be the basis of synthetic a priori judgments, but they can help in

explaining what cannot be stated or formulated in synthetic a priori

judgments.

4. The Digital Reflective Judgement

I propose that software be conceived from a Kantian perspective, i.e.,

as a kind of reflective judgment. I call this new form of reflective

judgment “digital reflective judgment” (henceforth DRJ). Why is it

that software cannot be compared to determining judgement? It can-

not be so compared because its function is not limited to subsuming a

concrete problem to an abstract computational structure, namely the

Turing machine. Software is not a mechanical process.

Let us look closely at what the programmer does. Like reflective

judgment, software starts from an individual case, i.e., the problem

to be solved. Software is essentially problem-solving. In order to

solve a particular problem, the programmer creates a solution, which

should be universal, i.e., applicable to all such problems. The pro-

grammer has not yet made categories that can be used to subsume

the particular case/problem. She/he has to invent and create these

categories. This universal is the set of syntactic and semantic catego-

ries (the high-level language) that the programmer uses to define

and solve a particular problem. Therefore, the first work of the pro-

grammer is to “translate” the particular problem (drawing, writing,

Luca M. Possati, Digital Reflective Judgement

16

printing, etc.) into an abstract structure. This is not automated work.

The programmer must choose the language that best works in rela-

tion to the problem she/he faces—for instance, building a website, a

smartphone app, or a calculation program or creating a data visuali-

zation, etc.—as well as the libraries and best data architecture. This is

creative work.

Now, in Kantian terms, the process that leads from the individual

problem to its re-interpretation in a formal system is completely non-

theoretical. In fact, this process adds nothing to the “heart” of the

computer, namely, the Turing machine—the computability. Using a

certain programming language or a certain algorithmic style does

nothing to influence the behavior of the Turing machine. The Turing

machine does not understand the high-level language, the particular

problem, or human reality. The programmer reflects on the problem

and proposes an algorithmic solution expressed in the high-level lan-

guage. She/he provides an interpretation of the problem and its solu-

tion (the higher-order representation under which to subsume the

particular). This solution has to be translated into a formal language

understandable to the Turing machine (the binary language, 1 and 0,

so-called “machine language”) through a compiler. Nonetheless, the

Turing machine does not solve that problem or implement that solu-

tion. It only performs a series of logical operations. It does not inter-

act with its environment. It cannot independently solve a concrete

human problem in the same way that the determining judgment can-

not be used to explain the living organism. The Turing machine can

solve that problem only if the latter is interpreted and translated in a

certain language and rules, i.e., in a certain computational architec-

ture.8

8 Computable functions are precisely those computable by lambda terms or general

recursive functions. Alonzo Church and Alan Turing published independent papers

that purported to demonstrate a general solution to the Entscheidungsproblem. A

Critical Hermeneutics, 4 (2020)

17

Turner (2018: 67) recognizes this point:

Without programming languages, machines would be idle

devices much like cars without drivers or hairdressers with-

out combs. […] General problem solving in these [machine]

languages is difficult and unnatural because control is lim-

ited to instructions for moving data in and out of store, and

representation is performed using numbers or Boolean val-

ues. These languages are for machines not humans.

Instead, high-level languages,

employ more abstract concepts and control features such as

procedures, abstract types, functions, polymorphism, rela-

tions, objects, classes, modules, and nondeterminism.

These concepts aid problem solving and enable a more nat-

ural representation of the problem domain. They operate at

a distance from the physical machine, and do not depend

upon the architecture of any specific machine. This is made

possible by layers of translation and interpretation (67).

This is the essential function of software: allowing the Turing

machine to interact with the environment and solve concrete prob-

lems. Just as the faculty of judgment exerts a function of mediation

between nature and understanding, software also mediates between

good number of solutions were proposed that all turned out to be extensionally

equivalent. Obviously, this is not the place to deal comprehensively with computa-

bility: I refer manly to Turing (1936), Adams (1983), Copeland et al. (2013), Im-

merman (2011), Boolos et al. (2007). Regarding the analogy proposed in this pa-

per, I consider computability as an abstract mathematical structure and software as

a way of representing and interpreting this structure. I compare computability to

the Kantian understanding: it is a set of mechanical laws that govern our way of

thinking about the world.

Luca M. Possati, Digital Reflective Judgement

18

concrete reality and the Turing machine. This is the analogy that I

propose to develop in the following pages. The art of programming is

the ability to see how the Turing machine can solve a specific con-

crete problem. All the different parts of programming (HLL, compil-

ers, interpreters, specifications, etc.) are only different ways of bring-

ing the problem and the Turing machine as close as possible.

In other words, the programmer performs the three fundamental

operations indicated by Kant in Logik (§6): comparison, reflection,

and abstraction. She/he compares the concrete problem and the Tu-

ring machine (let us call it its “computational resources”).9 After iden-

tifying the possible connections between the problem and the “com-

putational resources”, she/he reflects on these connections and elab-

orates her/his solution to the problem through the “computational re-

sources” at her/his disposal. This solution is expressed through a

formal architecture and a physical machine that implements this ar-

chitecture. This solution has an analogical function because it allows

us to connect the problem and the “computational resources”, the

concrete, and the abstract. This happens in two ways: a) input –

software allows us to interpret the concrete problem in computational

terms and in a language that can be understood by the Turing ma-

chine; b) output – software allows us to interpret the physical electri-

cal impulses produced by the CPU as b.1) the solution of the problem

or b.2) the physical expressions of the Turing machine abstract oper-

ations. Software reflection allows us to think that the Turing machine

“solves” that problem, even if this is not the case, because the Turing

machine does not “see” that problem properly. The problem solved by

the Turing machine is not “our” problem (print a paper, booking a ho-

tel, read the newspaper, etc.) but a series of mathematical functions.

9 I use the expression “computational resources” here because there are many

ways to understand computation and many ways to implement it.

Critical Hermeneutics, 4 (2020)

19

Software mediation/reflection allows us to think that an abstract

mathematical structure can implement physical operations.

5. The Software Imagination

There are two possible objections to the analogy between software

and Kantian reflective judgment that I try to draw. The first is the

most immediate: “Software does not have the form of a judgment, of

a proposition, then we cannot compare software and reflective

judgment”. Obviously, programming languages are not formulated in

natural language and, therefore, are not based on the same

structures as natural language (subject + predicate, as Kant thinks).

Programming languages are formal and based on a precise syntax or

grammar. However, if we consider the Kantian notion of judgment in

more general terms, as a power of synthesis expressed in a certain

language, then it is possible to reply to the objection. Basically,

programs are acts of synthesis between different components in

interaction, thanks to connectors, in order to form a system. Then,

this formula

x := x + 1; y := x ∗ y

is tantamount to a proposition or a set of propositions. We can

translate strings of code in propositions, or a set of propositions, and

vice versa. This is the reason why programming languages can be

understood by humans. 10

The second possible objection is that our thesis reproduces, even

if in alternative terms, those of Colburn and Turner: the programmer

creates the harmony between physical and symbolic, between

abstract and concrete, as a sort of deus ex machina. This is an

10 The architecture of programs is determined, above all, by the paradigm that the

programmer decides to follow. It can be imperative (or procedural), functional, logic,

or object-oriented, each of which is connected to a precise conception of the

program and of computation. Nevertheless, many languages can be mixed (Turner

2018: 67–76).

Luca M. Possati, Digital Reflective Judgement

20

important objection because it gives me the opportunity to clarify a

crucial point. The analogy/mediation of software does not come from

a creatio ex nihilo in the programmer’s mind.

Kant can again provide us with an important suggestion: at the

roots of the three aforementioned operations (comparison, reflection,

and abstraction) there is the faculty of transcendental imagination.

The transcendental imagination produces the synthesis between the

singular and the universal in determining judgment (transcendental

schematism). It is always the transcendental imagination that

produces the universal from the individual in the reflective judgment.

For Kant, the transcendental imagination has a synthetic function that

precedes and determines judgment and its logical forms.

I do not want to analyze the Kantian doctrine of imagination,

which is not the subject of this paper (see Heidegger 1990; Sellars

1978). I want to formulate another question, which extends the

comparison between software and reflective judgment that I try to

formulate: how does the imagination work in software?

The programmer tackles a concrete problem and fixes

requirements. Her/his job is to create a formal representation of this

problem and these requirements. This is an act of imagination: the

programmer creates an interpretation of the problem, which can be

understood by the Turing machine. Why should this act be one of

imagination? It is because the Turing machine and concrete reality

cannot communicate—the Turing machine cannot understand the

problem. Therefore, the programmer has to interpret the problem

and create a new representation of this problem (the program) that

can mediate between the problem itself and the Turing machine. This

is an act of imagination.

Thus, in Kantian terms, the scope of DRJ is to reach a “free

agreement” between problem, imagination (the program), and

understanding (the Turing machine). This “free agreement” enables

Critical Hermeneutics, 4 (2020)

21

us to “see” the Turing machine as it solves that problem. The

imagination enables the programmer to “see” how the Turing machine

can solve the problem, even if the Turing machine cannot “see” the

problem. Moreover, this agreement has to be effective. It requires

implementation.

Given this, the imaginative act of software cannot be a creatio ex

nihilo. It first has to be technical. This act must respect a series of

technical constraints: rules, parameters, materials, etc. Furthermore,

it has to a) express a language, b) have the ability to have a physical

effect, i.e., to realize a causal action on the underlying material

reality (the hardware, the instrument, the surrounding environment,

etc.).

My hypothesis is that the imaginative act underlying software is

realized through writing. Why do I choose writing? For two reasons.

First, software is writing; it is based on writing. For software, to

be written is not a secondary property; it is its condition of possibility.

Software would not be software if it were not written. Software is a

form of writing that is not intended to be read as such; in fact, “for a

computer, to read is to write elsewhere” (Chun 2013: 91). “Software

is a special kind of text, and the production of software is a special

kind of writing” (Sack 2019: 35).

Second, writing is a specific form of synthesis between the

abstract and concrete. This is in two different senses:

• Writing is a synthesis between a language (abstract structures:

grammar, syntax, semantics) and a material support (paper,

clay, screen, etc.);

• Writing is a synthesis between language and space because it

“spatializes” language, and this spatialization allows the visual-

ization of language and, therefore, a completely new percep-

tive experience of the language. Spatialization and visualiza-

Luca M. Possati, Digital Reflective Judgement

22

tion allow the discovery and invention of new uses of language

and new concepts.

Writing is the name of a certain type of reason. As Bachimont

(1996: 7) says:

[…] writing creates a spatial synopsis, allowing to identify

relations and properties that remain undetectable in the

linear succession of the temporality of the speech; writing

shows relations which are not perceptible in orality. Indeed,

by producing a spatial two-dimensionality of the content of

the speech, mind can simultaneously access different parts

of the content independently of the order connecting these

parts in the oral flow.

Stressing the centrality of writing in knowledge, Bachimont

(2001) speaks of a “graphical reason”, i.e., a condition of possibility of

“computational reason”. In doing so, Bachimont extends the results of

Goody (1977), the anthropologist who most contributed to

understanding the role of writing in the emergence of certain

cognitive operations or ways of thinking. In his famous work The

Domestication of the Savage Mind, Goody (1977) shows the

differential reasoning between written cultures and so-called oral

cultures. Indeed, rather than attributing these differences to an axis

of continuous progress on which oral cultures occupy a position

inferior to written cultures, the former being an earlier state of the

second, Goody shows that there are significant differences in thinking

of the worlds between oral and written cultures and that these

differences derive from the absence/presence of writing. Goody

claims that writing has revolutionized human thought by producing

autonomous conceptual structures and a specific relationship with the

world. Writing introduces three main conceptual structures: the list,

Critical Hermeneutics, 4 (2020)

23

the formula, and the table. They form what we call “the graphical

reason”.

I now propose a combination of Bachimont’s (2001) and Goody’s

(1977) reflections with those of the French designer and graphical

artist Bertin (1983). In doing so, I distinguish three levels:

• Diagrammatical reason11

• Graphical reason

• Computational reason

I analyze only the last two levels and distinguish six conceptual

structures (types of spatial synopsis) to which writing gives rise. I

summarize them in this table. The structures of computational reason

are a derivative of those of graphical reason. The first ones were

described by Goody (1977) and the second by Bachimont (2001) (I

changed his vocabulary a bit).

Graphical

reason

LIST FORMULA TABLE

Computational

reason

STACK STRING OF

CODE

NET

Each of these six structures is the expression of a synthesis

between a language (a syntax, an alphabet, and a set of rules) and

space. Each type of programming language comes from the

interaction between the three conceptual structures of “computational

reason”. While the three structures in graphical reason (list, formula,

and table) can work separately, in computational reason, they cannot:

they must interact.

The stack is the basic form of data architecture: it allows the

11 I use “diagrammatical reason” because I consider the writing as an evolution of

the diagram. This is a thesis I am working on in another paper, which I cannot deal

with extensively in this paper. As for the notion of diagram, I refer mainly to Peirce

(1992, 1998), Stjernfelt (2007), and Bender and Marrinan (2010).

Luca M. Possati, Digital Reflective Judgement

24

classification and spatial organization of data. The net allows

communication between different stacks and combines stacks in a

coherent whole. The string of code activates the relationships

between the objects in the stacks. For instance, in Java programming

language, the stacks correspond to classes, which include attributes

and methods. Each string of code combines a method and an object

and, therefore, makes the stacks interact through the net. The same

thing can be said for other types of programming languages.

My claim is that any syntax and semantics of software language

presuppose these conceptual structures. When the programmer uses

terms such as “object”, “operation”, etc., she/he constructs their

meaning through these syntheses of language and space.

The programmer could not draw this

or write this

if she/he did not previously have the structures of diagrammatical

and graphical reason and, then, those of computational reason. The

art of programming is first an expression of diagrammatical and

graphical reason. In creating her/his tools, the programmer writes

formulas and draws schemes—she/he acts like a mathematician or

logician. However, she/he has to overcome the diagrammatical and

graphical levels of reason. The program is an evolution of

diagrammatical and graphical reason.

The structures of computational reason are placed between the

Critical Hermeneutics, 4 (2020)

25

concrete problem and the Turing machine. In other words, they

mediate the relationship between “understanding” in Kantian terms

(the Turing machine) and “life” (the concrete problem to solve, the

implementations, etc.). The functional and physical levels

communicate, thanks to the mediation of these spatial syntheses.

Moreover, thanks to its physicality, like writing, software can causally

act on the physical machine (circuits) and have an effect in the world.

I am not saying that the synthesis of the functional and physical

levels is writing, only that it is realized though the spatial syntheses

made possible by writing. It is thanks to the hybrid (conceptual and

material) nature of these three spatial syntheses that we can “see”

the functional level in the physical, the series of mathematical

operations in the electrical impulses produced by the CPU, and,

therefore, the Turing machine solving that problem.

6. The Software Delight

In the first book of the Critique of Judgement (§1), Kant (2016: 65)

writes,

If we wish to discern whether anything is beautiful or not,

we do not refer the representation of it to the object by

means of understanding with a view to cognition, but by

means of the imagination (acting perhaps in conjunction

with understanding) we refer the representation to the

subject and its feeling of pleasure or displeasure. The

judgement of taste, therefore, is not a cognitive judgement,

and so not logical, but is aesthetic, which means that it is

one whose determining ground cannot be other than

subjective.

The judgement of taste is based on a certain agreement between

Luca M. Possati, Digital Reflective Judgement

26

imagination and understanding. This means that the judgement of

taste is based on the subject’s feelings, i.e., the manner in which the

subject is affected by representations. The judgment of taste applies

the principle of finality to the delight coming from the agreement

between imagination and understanding, which Kant calls a “free

play” of faculties. This delight is independent of any interest (see §2).

In this delight caused by representations, the faculty of judgement

finds the mark of finality. As Kant (2016: 67) says,

This relation, present when an object is characterized as

beautiful, is coupled with the feeling of pleasure. This delight is by the

judgement of taste pronounced valid for everyone; hence an

agreeableness attending the representation is just as incapable of

containing the determining ground of the judgement as the

representation of the perfection of the object or the concept of the

good. We are thus left with the subjective finality in the

representation of an object, exclusive of any end (objective or

subjective) consequently the bare form of finality in the

representation whereby an object is given to us, so far as we are

conscious of it as that which is alone capable of constituting the

delight which, apart from any concept, we estimate as universally

communicable, and so of forming the determining ground of the

judgement of taste.

In DRJ, the agreement between imagination and understanding,

which is realized through writing, delights the programmer. The

programmer enjoys when the machine runs well and fast and solves

the problem. This delight is seen as the expression of a finality: the

machine acts for us and improves our world. Nevertheless, this

finality is purely subjective. The machine is built by humans and

responds to human purposes. Software specifications meet human

Critical Hermeneutics, 4 (2020)

27

criteria.

I see here an interesting parallelism between DRJ and the

Kantian judgement of taste. In both cases, the agreement between

imagination and understanding generates a delight that is the

expression of the principle of finality. As we said earlier, the

fundamental task of a programmer is to translate a problem (the

singular concrete case) into computational terms (the understanding).

She/he can do this only by using her/his imagination because there is

no connection between concrete reality and the Turing machine. The

programmer has to use her/his imagination. She/he creates the

universal by which to think about the single individual case and make

it comprehensible through understanding (the Turing machine). In

doing so, she/he uses the imaginative structure of writing, the form

of spatialization, and the materialization of language. The

programmer reaches her/his scope only when she/he reaches an

agreement between the concrete problem, her/his imagination, and

the Turing machine. The program mirrors this agreement, which in

turn makes the physical machine work and produces a delight.

Through this delight, DRJ applies the principle of finality.

In the judgment of taste, the principle of finality is not the result

of the operation of judging; it is its condition of possibility, namely,

what guides the power of judging and makes it applicable. The same

can be said for software. In her/his imaginative work, the

programmer is oriented and guided by the principle of finality. This

principle precedes and determines the syntheses of writing between

the physical and functional levels. It precedes and determines all the

stages of the programming.

The main way in which the principle of finality appears in

programming is the act of design. Programming is essentially a

design act: “design is everywhere in computer science” (Turner 2018:

128). The choice of what language to use and the algorithmic style is

Luca M. Possati, Digital Reflective Judgement

28

strictly connected to design choices and is, therefore, aimed at the

construction of well-designed programs. Design is not just about

beauty. “Design is a practice of creation turned towards the future

and supported by an innovative intention” (Vial 2010: 44).

According to Turner (2018: 161), the hallmarks of a good digital

design are 1) simplicity, 2) expressive power, and 3) security.

However, Turner subordinates design to semantics: “More explicitly,

the things that we may refer to and manipulate, and the processes

we may call upon to control them, need to be settled before any

actual syntax is defined. This is the ‘semantics-first principle,’

according to which, one does not design a language, and then

proceed to its semantic definition as a post hoc endeavor; semantics

must guide design” (169).

Even on this point, Turner’s analysis appears to be characterized

by an excessive intellectualization. As the French philosopher

Stéphane Vial (2010) suggests, the objects of design are objects that

have been submitted to a process of design, which consists of

conceiving and producing effects that point to “experiences to be

lived by means of forms” (115). The effects of design operate on the

level of form, social meaning, and experience; thus, Vial sees design

primarily as a “generator of human existence that proposes possible

experiences” (65). In Vial’s view, design deals not so much with the

being as with events, not so much with the existing as with the new

that will emerge. As the French designer Alain Findeli (2010) writes,

the purpose of design is to improve the habitabilité du monde, i.e.,

our ability to live on this planet. Thus, design has a phenomenological

and existential function, the aim of which is to improve the interaction

between machines and humans and, therefore, between humans and

the world. In this sense, design can be considered an extension of the

use of Kant’s principle of finality in the judgment of taste. The

agreement between imagination and understanding produces a

Critical Hermeneutics, 4 (2020)

29

delight that is the expression of a finality in nature. Programmers’

work makes the interaction between humans and machines possible

through design as an expression of the principle of finality. Design is

“a means for human beings to envision and realize new possibilities of

creating meaning and experience and for giving shape and structure

to the world through material forms and immaterial effects”

(Folkmann 2013: 45).

From this point of view, I claim that design is the condition of

programs, not the opposite. The programmer does not decide

abstractly which objects to take into consideration: she/he deals with

problems and has to choose the best strategy to solve them and give

them meaning. The design criteria of elegance, correctness, simplicity,

uniformity, modularity (the process of breaking up complex problems

into smaller, simpler ones.), transparency, reliability, etc., shape the

semantic and syntactic of the program. All possible criteria of the

correctness of software are thought by the programmer through the

principle of finality, i.e., through design. Writing is the first means by

which software design is achieved.

I think that this view is closer to the way in which programmers

understand their work. “One of the main reasons most computer

software is so abysmal is that it’s not designed at all, but merely en-

gineered. Another reason is that implementors often place more em-

phasis on a program’s internal construction than on its external de-

sign, despite the fact that as much as 75 per cent of the code in a

modern program deals with the interface to the user” (Kapor 1996:

5). Moreover, software is not just a design job. It is also the source of

a new form of design. “A discipline of software design must train its

practitioners to be skilled observers of the domain of actions in which

a particular community of people engage, so that the designers can

produce software that assists people in performing those actions

more effectively” (Denning and Dargan 1996: 112).

Luca M. Possati, Digital Reflective Judgement

30

7. Conclusions

In this paper, I developed a series of criticisms of Turner’s approach

(2018) on software. In order to overcome the limits of Turner’s ap-

proach, I proposed a definition of software from a transcendental

Kantian perspective, i.e., through the concept of reflective judgment.

I explain why and how we can consider software as a new form of re-

flective judgment, “digital reflective judgment”. This judgement is re-

alized through a type of imaginative synthesis that mediates between

physical implementations and mathematical structures. I identified

these structures as specific forms of writing that I called “graphical

and computational reasons”, following Goody (1977) and Bachimont

(2001). Finally, I clarified my approach by showing the parallelism

between software and the Kantian judgment of taste. In both cases,

the principle of finality is an a priori condition.

I think that a Kantian approach to the question of software is a

good model in explaining the nature of software in accordance with

the concrete work of programmers. The transcendental approach to

software avoids the main difficulties of Turner’s approach outlined in

section 2. In fact, I have shown that a transcendental approach is

able to 1) explain the interaction between software and users through

design; 2) escape the overly static framework of an ontology of the

thing and then support an ontology of the process, which is much

more suitable in explaining a phenomenon such as software; and 3)

avoid an excessive intellectualization of software and highlight its

creativity and the underlying work of the imagination.

References

Adams, R. (1983). An Early History of Recursive Functions and Com-

putability. From Gödel to Turing. Boston: Docent Press.

Critical Hermeneutics, 4 (2020)

31

Bachimont, B. (1996). Signes formels at computation numérique.

http://www.utc.fr/~bachimon/Publications_attachments/Bachimont.p

df (accessed: October 2, 2020).

Bender, J., and M. Marrinan. (2010). The Culture of Diagram.

Stanford: Stanford University Press.

Bertin J. (1983). Semiology of Graphics. Madison, WI: University of

Wisconsin Press.

Boolos, G., J. Burgess, and Richard C. Jeffrey. (2007). Computability

and Logic. Cambridge: Cambridge University Press (1st ed. 1974).

Callanan, J. (2008). Kant on Analogy. British Journal for the History of

Philosophy 16 (4): 747–772.

Chun, W. (2013). Programmed Visions. Software and Memory.

Cambridge: MIT Press.

Colburn, Timothy R. (1999. Software, Abstraction, and Ontology. The

Monist 82: 3–19.

Copeland, Jack B., Carl J. Posy, and Oron Shagrir. eds. (2013).

Computability. Turing, Gödel Church, and Beyond. London-Cambridge:

MIT Press.

Denning, P., and P. Dargan. (1996). Action-centered Design. In

Bringing Design to Software, edited by T. Winograd, 105–120. New

York: ACM Press.

Eisler, R. (1994). Kant Lexicon. Translated by A.-D. Balmès and P.

Osmo. Paris: Gallimard.

Findeli, A. (2010). Searching for Design Research Questions: Some

Conceptual Clarifications. In Questions, Hypotheses & Conjectures:

Discussions on Projects by Early Stage and Senior Design

Researchers, edited by R. Chow, W. Jonas, G. Joost, pp. 23-36.

London: Bloomington.

Folkmann, M. N. (2013). The Aesthetics of Imagination in Design.

Cambridge: MIT Press.

Ginsborg, H. (2006). Empirical Concepts and the Content of

http://www.utc.fr/~bachimon/Publications_attachments/Bachimont.pdf
http://www.utc.fr/~bachimon/Publications_attachments/Bachimont.pdf

Luca M. Possati, Digital Reflective Judgement

32

Experience. European Journal of Philosophy 14: 349–372.

Goody, J. (1977). The Domestication of the Savage Mind. Cambridge:

Cambridge University Press.

Hanna, R. (2001). Kant and the Foundations of Analytic Philosophy.

Oxford: Clarendon/Oxford University Press.

Hanna, R. (2005). Kant and Nonconceptual Content. European

Journal of Philosophy 13: 247–290.

Hanna, R. (2006). Rationality and Logic, Cambridge, MA: MIT Press.

Hanna, R. (2017). Kant’s Theory of Judgement. In The Stanford

Encyclopedia of Philosophy, edited by E. Zalta.

https://plato.stanford.edu/entries/kant-judgment/supplement4.html

Heidegger, M. (1990). Kant and the Problem of Metaphysics.

Translated by R. Taft. Bloomington: Indiana University Press.

Ihde, D. (1990). Technology and the Lifeworld. Bloomington: Indiana

University Press.

Immerman, Neil. (2011). Computability and Complexity. In The

Stanford Encyclopedia of Philosophy, edited by E. Zalta.

https://plato.stanford.edu/entries/computability/ (accessed: October

2, 2020).

Indurkhya, B. (2017). Some philosophical observations on the nature

of software and their implications for requirement engineering.

https://www.academia.edu/7817075/ (accessed: October 2, 2020).

Land, T. (2011). Kantian Conceptualism. In Rethinking Epistemology,

edited by G. Abel et al., 197–239. Berlin: DeGruyter.

Land, T. (2015), Nonconceptualist Readings of Kant and the

Transcendental Deduction. Kantian Review 20: 25–51.

Land, T. (2016), Moderate Conceptualism and Spatial Representation.

In Kantian Nonconceptualism, edited by D. Schulting, pp. 145–170.

London: Palgrave Macmillan.

Longuenesse, B. (1993). Kant et le pouvoir de juger. Paris: Puf.

Kant, I. (2016). The Critique of Judgement. Translated by J. Creed

https://plato.stanford.edu/entries/kant-judgment/supplement4.html
https://plato.stanford.edu/entries/computability/

Critical Hermeneutics, 4 (2020)

33

Meredith. Scotts Valley: CreateSpace.

Kapor, M. (1996). A Software Design Manifesto. In Bringing Design to

Software, edited by T. Winograd, 1–9. New York: ACM Press.

Kroes, P., and A. Meijers. (2002). The Dual Nature of Technical

Artifacts – Presentation of a New Research Programme, in Technè:

Research in Philosophy and Technology, 6: 23–46.

Peirce, C. S. (1992). The Essential Peirce, vol I. (1867–1893) (eds. N.

Houser and C. Kloesel). Bloomington: Indiana University Press.

Peirce, C. S. (1998). The Essential Peirce, vol II. (1893–1913) (eds. N.

Houser and C. Kloesel). Bloomington: Indiana University Press.

Sack, W. (2019). The Software Arts. Cambridge: MIT Press.

Sellars, W. (1978). The Role of the Imagination in Kant’s Theory of

Experience. In Categories: A Colloquium, edited by H. W. Johnstone Jr.

Pennsylvania State University, 120–144.

Stjernfelt, F. 2007. Diagrammatology. Berlin: Springer.

Turing, A. M. 1936. On Computable Numbers, with an Application to

the Entscheidungsproblem. Proceedings of the London Mathematical

Society, 42: 230–265.

Turner, R. 2018. Computational Artifacts. Towards a Philosophy of

Computer Science. Berlin: Springer.

Vial, S. 2010. Court traité du design. Paris: Puf.

Luca M. Possati, Digital Reflective Judgement

34

