Phoenician ceramic tableware between East and West: some remarks on open forms and on their absolute chronology

Sara GIARDINO
Sapienza, Roma
mail: sara.giardino@uniroma1.it

Introduction

Among the vessels used for serving and consuming beverages or food, open forms are generally characterized, from a geometrical point of view, by rim diameters exceeding or equaling the body diameters. Plates, bowls, goblets and Phoenician imitations of Greek kotylai and skyphoi meet these geometrical criteria. A variety of manufacturing techniques and shapes fall into the category of the tableware pottery, ranging from vessels for everyday use to the most finely wrought ones, for a lavishly decked table or, setting aside their primary function, for the grave goods in the necropolis.

In this paper, the focus will fall on the Iron Age documentation of the Syro-Palestinian coast (11th-6th centuries BC) and on the finds of a key area for the Phoenician westwards expansion, i.e. the Iberian Peninsula (9th-6th centuries BC). The purpose is to provide a chronological framework for the evolution of the open forms. Even though the research is based only on a part of the ceramic repertoire, the analysis of the contexts and the arrangement of material data in comparative stratigraphies, combined with absolute chronology, provided some clarification, not only on the sites of the Syro-Palestinian region, concerning the chronological debate that has been going on for several years in a complex situation for different reasons, but also on the western zone, about the chronology of the early stages of the Phoenician presence, even through the recent publications on archaeological researches carried out in Huelva1 and Cádiz2.

1 González de Canales Cerisola et al. (2004).
This paper is based on my doctoral dissertation\(^3\) revised for publication purposes\(^4\). More than 3000 findings\(^5\) have been catalogued through a typological system that identifies the shapes in a hierarchical way by a label, using three numbers corresponding to: shape, type and subtype\(^6\). They are hence subdivided into five ceramic classes according to surface treatment or decoration\(^7\). In the scenario reconstructed by the ceramic finds of the two areas, Levantine and Iberian, nine large formal groups have been recognized on the basis of the main morphological characteristics: 1.0.0, plates; 2.0.0, small plates; 3.0.0: bowls; 4.0.0: handled bowls; 5.0.0, small bowls; 6.0.0, deep bowls; 7.0.0, goblets; 8.0.0, skyphoi; 9.0.0, kotylai.

Plates (1.0.0), with a more open and shallower profile, probably fit to the reception of solid foods\(^8\). Among the remaining shapes, usually showing a smaller diameter of the mouth and a greater depth, the only ones probably not having a drinking function are the small plates (2.0.0) and the small bowls (5.0.0): the lesser sizes, in fact, suggest a use for contain sauces and condiments in domestic contexts or unguents for funeral practices in funerary contexts\(^9\).

The vast majority of findings belong to the formal groups of plates (1.0.0) and bowls (3.0.0). The widespread dissemination of plates in the western area is opposed to the lack of samples in the eastern area. In the next paragraphs a summary of the stages of the development of these two types of vessels and their chronology will follow, starting from the Levantine attestations until their adaptation in the colonial sphere. Since the debate on the absolute Mediterranean Iron Age chronology (including the Levantine one) has not been resolved yet, and at the present state of knowledge it is impossible to determine an absolute and completely reliable chronology, the focus has been placed mainly on the evolution of the material culture itself. The elaboration of a typological sequence, from which a relative ceramic sequence was extracted, has been an indispensable requisite. Firstly, starting from the data provided in the original publications, the relationships of synchronicity and diachronicity of the evidences have been remarked. They are based on the observation of the variations of morphological and typological aspects as well as of the technical and decorative characteristics and also on the association with other ceramic shapes and on the interrelations with the evidences recorded in other sites that allow the stratigraphic concordances. The sequence so obtained allows a contextualization of the material evidences from a relative chronological perspective\(^10\). Crossing these relative data with other information (such as \(^{14}C\) dating, foreign references as ceramic imports, historical associations and known dates) it has been tried to located the evidences in a previously established chronology and to draw up a chronological

5 University of Rome, 2012.
4 Giardino (in press).
5 They come from: Ras el-Bassit, Tell Kazel, Khalde, Sarepta, Tyre, Tyre al-Bass, Achziv, Hazor, Tell Keisan, Tel Dor (Syro-Palestinian coast); La Fonteta, Almunécar (Seixi, Cerro de San Cristóbal - “Laurita” necropolis, Puente de Noy), Las Chorreras, Morro de Mezquitilla, Trayamar, Toscanos, Cerro del Villar, Castillo de Doña Blanca, Huelva (Iberian Peninsula). For bibliographical references cf.: Giardino (in press), § 2.4-2.4.
6 The morphological diagnostic elements are examined in order of importance for the purpose of identifying types and variants: for the plates are considered firstly the rim, secondly the basin profile and for the bowls primarily the basin profile and then the rim.
7 Plain Ware, Red Slip Ware, Red Painted Ware, Black Painted Ware, Bichrome Ware.
8 Anderson (1988), 43. For a detailed study on red slip plates from the Malaga coastline and their use to date pottery of other sites according to the system employed by H. Schubart (based on the increasing of the width of the rim through time) cf.: Schubart (1976); Schubart (2005).
9 Balzano (1999), 67; Botto (2009), 164 (for small bowls).
10 Núñez Calvo (2015), 79.
profile of the different stages of the typological evolution of open forms. Sometimes it was necessary to revise the dating advanced by scholars in the excavation reports11.

I would like to point out the current limits of the chronological attributions: dating is an approximate procedure, the margin of error being greater for the most archaic phases, less important for the stages after 8th century12. These limits are due to, inter alia, the problems posed by the chronology of Greek ceramics and the 14C dating techniques. Concerning the latter, one should keep in mind the limits of this method and of the resolution that have detected disagreements in the chronological interpretations, even if the determinations were obtained from short-lived organic samples, originating from deposits safely assigned stratigraphically, that by all standards should be considered reliable13. The clearest example is the Stratum IV of Tel Rehov (in the Beth-Shean valley) where the radiocarbon dates obtained from different organic samples examined by different laboratories have led to divergent interpretations14. The different readings of the 14C outcomes are used to date anew the Greek pottery associated to the examined organic samples and consequently impact the Greek Geometric chronology15. Coldstream’s dates suggested in 1968 were based upon J.W. Crowfoot and K.M. Kenyon’s low chronology for Samaria and depended only on a few sherds, most of which from dubious contexts, found in the Levant in the early years of archaeological research16. Nevertheless, the Low Chronology advocated by I. Finkelstein17, based upon ceramic observation and radiometric dating and which dates to the 10th century a number of destruction strata conventionally ascribed to the 11th century18, supports the Coldstream’s Conventional Chronology. Notwithstanding all the problems enumerated above for these dates, according to the current state of the art, there are not sufficient data to revise Coldstream’s Conventional Chronology, adopted, together with Finkelstein’s Low Chronology, in this research.

This paper is divided into three main parts, each one featuring the related chronological issues: first I will explain the stages of the development of classified shapes in the Levantine sphere; then, I will examine the first evidences of the Phoenician presence in western area, namely from the archaic context of Huelva; and finally I will present the stages of the development of classified shapes in the Iberian Peninsula.

\textit{The beginnings: the Syro-Palestinian area}

The study of the eastern documentation faces the ongoing difficulty to establish an accurate absolute chronology. That is the subject of a debate between those supporting a low chronology (following I. Finkelstein) and the exponents of the Biblical Archaeology. At the centre of the controversy lies the archaeological data from the Southern Levantine area, on

11 Giardino (in press), Tabb. 5, 5-6.
12 This applies especially to the absolute chronology of the Syro-Palestinian coast: a high degree of reliability is available only from the military campaigns of Tiglatpileser III (745-727 BC) when the correlations of archaeological contexts to documented historical events increase: Botto (2003), 589 (with note 38). In general, also for Western Mediterranean area, currently there are no valid absolute dates in the chronological sequence of the Greek Iron Age earlier than the second half of the eighth century BC: Fantalkin (2001), 122.
13 For a synthesis of the factors that complicate the use of 14C dating cf.: Núñez Calvo (2016a), 80.
15 Cf. below: § \textit{The colonial ceramic production: the Iberian Peninsula} with notes 77-78.
16 Coldstream (1968).
17 Among the papers upon the topic cf.: Finkelstein (1998a); Finkelstein (1998b); Finkelstein, Silberman (2001).
18 Finkelstein (1999), 39.
which many discussions have been focused thus far, both for the many ongoing researches and for the use of 14C dating techniques.

Since in this framework I cannot address this issue in detail, I will concentrate on the stages of the evolution of the Levantine open forms and on their absolute chronology, whose determination has required a synchronization of artefactual (including those of regions such as Cyprus and Greece), stratigraphic and radiometric data.

From the study of the reconstructed chrono-typological sequence for the eastern zone it is possible to establish a few general observations. Within the envisioned long period, I identify three great chrono-typological horizons which correspond to the fundamental stages of the formal and stylistic evolution of the open forms. Among the Levantine sites being investigated, the main ones used as reference are Tyre and Sarepta since they provide fully continuous sequences across the Late Bronze and Iron ages.

The most archaic horizon concerns materials coming from layers following a transitional phase between the end of the Late Bronze Age and the beginning of the Early Iron Age. They have retained many characteristics of the previous phase in which the different regions of the Levantine coast shared a similar ceramic repertoire. A starting dating around 1100-1050 BC is suggested and the first chrono-typological horizon, called Eastern Mediterranean I (M-OR I, Fig. 1), continues until the end of the 10th century. It is characterized by local ceramics developed from late Bronze Age prototypes, mostly undecorated (Plain Ware). The vessels in use in this period are generally bowls with a curved body wall or globular bowls. The rare samples of plates have a narrow rim and curved wall.

The subsequent chrono-topological horizon, namely Eastern Mediterranean II (M-OR II, Fig. 2), starts around the beginning of the 9th century and finishes at the end of the same century. A significant change occurs: the use of red slip and bichrome decorative patterns.

19 Cf. on these issues: Levy, Higham [ed.] (2005), especially papers of A. Mazar and I. Finkelstein in the volume.
20 For further information I refer to: Giardino (in press).
21 Cf. note 5.
22 Bikai (1978).
24 The key contexts for this stage are: Tyre (XIII-XI), Sarepta (E1-D2, first part of D1), Tell Kazel (IA I), Hazor (XII-XI), Tell Keisan (9-8), Tel Dor (Ir1b - 1/2).
25 Subtypes 3.1.1-3.1.3.
26 Subtypes 3.3.1-3.3.3.
27 Type 1.1.0.
28 The key contexts for this stage are: Tyre (X-VI), Tyre - al Bass (II), Sarepta (final part of D1 and first part C2), Tell Kazel (IA IIA, part of IIB), Achziv (T.C.4), Hazor (X-IX, first part of VIII), Tell Keisan (7-6), Tel Dor (Ir2a).
with red and black stripes, becomes much more frequent, spreading at this stage from large containers to smaller vessels like, exactly, bowls and plates. The plates are yet sporadic, both with narrow or simple rim. In addition to bowls with a curved body wall or to globular bowls, which continue in this period, new types spring with shallow basin and flaring rim, with plain straight-sided flaring profile, carinated with straight profile or with curvilinear profile.

29 Subtypes 1.1.2-1.1.3.
30 Type 1.2.0.
31 Type 3.1.0.
32 Subtypes 3.2.1-3.2.2.
33 Subtypes 3.4.1-3.4.3.
34 Type 3.7.0. It is interesting to note that the subtype 3.7.1, and especially one vessel from Sarepta (Stratum D1, 930 - 850/825, Anderson (1988), 625, pl. 33, 14 = Giardino (in press), n. 124, tav. XCV), has a parallel in the Bir Massouda context of Carthage (BM04/4460, Docter et al. (2008), fig. 3.4; cf. below notes 85, 96) and is seemingly non attested in any other western context.
35 Subtypes 3.8.1-3.8.2, 3.8.4-3.8.5, 3.8.7.
Finally, the third chrono-typological horizon identified, namely Eastern Mediterranean III (M-OR III, Fig. 3) covers the chronological range from the beginning of the 8th to the late 7th or middle/late 6th century. The layers included overlap with the Phoenician expansion in the West. Bichrome decorative patterns are progressively abandoned, replaced by the red slip, the dominant surface cover in the West. For all shapes a more complete documentation is available in this phase.

Concerning the plates, in the second half of the 8th century (M-OR IIIB) the type with narrow rim disappears and is replaced by a characteristic central and meridional Levantine elaboration, i.e. the type with large rim with an interior ridge, or by sporadic appearances of the plate with large rim, slightly tilted inwards or with very large rim, indistinct outwards, with concave walls. Concerning the bowls, there still are types already known from the pre-
Phoenician ceramic tableware between East and West

vious stage, including those with a curved body wall (of which only the variant with a distinct continuous rim remains), those with plain straight-sided flaring profile, those carinated with straight profile. For globular or with shallow basin and flaring rim (with two new subtypes) bowls, the reserved slip and incise decoration is also attested especially starting from the second half of the 8th century (M-OR IIIB-C). New elaborations are known: two variants of the curvilinear profile type, with high carination and divergent rim (both sporadically attested), and the types with plain incurving rim and the hemispherical ones with a ridge.

The ceramic assemblage from Calle Méndez Núñez 7-13 / Plaza de las Monjas 12, Huelva

Moving to the Iberian Peninsula, at Huelva, in Calle Méndez Núñez 7-13 / Plaza de las Monjas 12, a large assemblage of materials was recovered during a rescue excavation. The pottery includes thousands of Phoenician, autochthonous, Greek, Sardinian, Cypriot and Villanovan potsherds. The importance of this assemblage of materials lies in the fact that it testifies to a material culture that is not preserved in other archaeological contexts and that it records the existence of a ceramic level more archaic compared to those of the first known western establishments.

Accurate dating of this mixture of materials is hampered by the conditions of its extraction. After the first publication of the assemblage, which was not stratified but connected by the authors to a stage between 900 and 770 BC through typological analysis, other chronological reconstructions have been proposed. They do not lead to only one conclusion. Linked to the chronological issue on the early Phoenician presence in the West, these hypotheses have been almost constantly directed, mostly by scholars of the Iberian sphere, towards a raise of the chronologies.

Because of the lack of any orderly stratigraphic context, in my opinion, it is impossible to organize the material in a reconstructed depositional stratigraphy and to know how many occupation levels the material represents or whether the deposit took place on only one time or in the chronological range of several decades.

The 250 samples catalogued in my study are divided into three formal groups: plates (1.o.o), bowls (3.0.o) and deep bowls (6.o.o).

42 Subtype 3.1.4.
43 Subtypes 3.4.1-3.4.3.
44 Type 3.7.0.
45 Type 3.3.0.
46 Type 3.2.0.
47 Subtype 3.8.3.
48 Subtype 3.8.6.
49 Subtypes 3.5.1-3.5.2.
50 Type 3.6.0.
51 González de Canales Cerisola et al. (2004); González de Canales Cerisola et al. (2006).
52 It has been proposed, through the organization of the out of context material in a reconstructed depositional stratigraphy and through the use of radiocarbon dates, a dating to the full 10th century, if not before: Mederos Martín (2006); González de Canales Cerisola et al. (2006), 26-27. Among the other scholars that have dealt with this issue cf.: Torres Ortiz (2005); Nijboer, van der Plicht (2006); Gilboa et al. (2008), 168-173; Núñez Calvo (2008), 18-19; Torres Ortiz (2008a); Torres Ortiz (2008b); Gilboa (2013).
53 Cf. the diverging thesis of A. Mederos Martín (2013).
Among the most archaic samples there would be two plates included in subtype 1.1.3 (with narrow rim, distinguished externally from the basin) close to Tyre’s type 14, already recognized in Strata XVI and XV, but still existing in Stratum IX. They testify to the persistence of some morphological characteristics of the Bronze Age, but they may be dated, as well as the other examples of the subtype 1.1.3, to the 9th century or to the first half of the 8th century (M-OR II-III). It is quite interesting to note that the other plates of the narrow rim type (1.1.0) of the context are comparable only with the repertoire of the motherland and not, for example, with the potsherds of the archaic phase of the Teatro Cómico of Cádiz or of the pit 20017 of Utica. The bowls with a curved body wall corresponding to Tyre’s types 11-13 are more profuse. The first subtype (3.1.1) is attested in Stratum XIII but one sample is still found in Stratum X, witnessing a usage, confirmed by the documentation of other sites of the Syro-Palestinian coast, starting from the early stages of the Iron Age until the first half of the 9th century (M-OR I-IIIA). The same dating can be attributed to the second subtype (3.1.2), which is, however, very common in Tyre during the entire time lapse represented by the Strata XIII-X and in the other Levantine sites between 11th-9th centuries (M-OR I-II). Also these two mentioned subtypes (3.1.1-3.1.2), as well as the plates of the narrow rim type (1.1.0), are missing in the other western sites, including Cádiz or Utica.

All the other analysed potsherds find their best comparisons in Strata X and IV (9th - first half 8th century, M-OR II-IIIA), with a particular concentration in the latter layer and in some cases in Strata III and II yet (second half 8th century, M-OR IIIB).

The review of some diagnostic elements (Phoenician potsherds of other shapes, Euboean Subprotogeometric pottery, and radiometric data) and the remark of the absence of some typical late morphologies of Tyre (of Strata III-I) lead to reduce the time span indi-

54 Due to the similarity to the pottery of Tyre “in combination with the historical prominence of the metropolis in the early expansion”, the typology elaborated by P.M. Bikai has been applied by the authors to the Phoenician pottery of Huelva: Bikai (1978); González de Canales Cerisola et al. (2006), 15. The two mentioned plates are: González de Canales Cerisola et al. (2004), lám. III, 28-29 = Giardino (in press), tav. IV, cat. nn. 3372-3373.

55 Periodo II: Torres Ortiz et al. (2014), 53-58, fig. 3-4 (820/800 - 760/750 BC).

56 López Castro et al. (2016), 74, fig. 6.

57 I will not include the paleographic documents because of their uncertain chronological attribution. M.L. Heltzer has proposed a dating to the 11th-10th century for one graffito, n. 2, and to circa 800 BC or just before for the others: González de Canales Cerisola et al. (2004), 133-136. However, it should be pointed out that a dating so archaic such as that proposed for the graffito n. 2 is not in accordance with the chronology of the ceramic support, a handmade amphora of the Sant’Imbenia type: Botto (2004-2005), 22.

58 Jugs types 9 e 11 (spouted jugs) e Storage jars type 12, as well as Plates 11-13, are very common in the early Iron Age and are not recorded after Stratum IX of Tyre (900-850 BC): Giardino (in press), 144-145.

59 Five vases (two kantharoi, two skyphoi, a trefoil mouth jug) initially ascribed by the editors to the Attic Middle Geometric II (800-760 BC) have been identified as Euboean by A. Domínguez Monedero; two skyphoi and fifteen plates with pendent semicircles from Euboea can be ascribed to Subprotogeometric I-III (900-750 BC); González de Canales Cerisola et al. (2006), 19; Domínguez Monedero (2013), 16.

60 The combination of three radiometric dates issued by the analysis on cattle bones provide a dating range from 930 to 830 BC with a 94 % probability: Nijboer, van der Plicht (2006); Nijboer, van der Plicht (2008). This absolute chronology attests the Phoenician presence in Huelva in the first half of the 9th century “if not before”: Nijboer, van der Plicht (2006), 35. Nevertheless, since the dating comes from a secondary and mixed assemblage, it cannot be used to date any artefacts because it is not sure that artefacts and bones hail from the same ensemble or moment or if the dating can be related to the phase with greater presence of material: Gilboa (2013), 322.

61 E.g., Plates 1-5, corresponding to Types 1.2.0, 1.4.0, 2.1.0 and subtype 6.4.1, are often found in other western settlements: Giardino (in press), 145.
Phoenician ceramic tableware between East and West

cated by the potsherds compared with the Tyre stratigraphic sequence and to establish a more accurate chronological definition for the deposit.

By absolute chronology data from the examined archaeological evidences it comes to light that the archaic assemblage of Huelva is made up of materials dating to the early 9th century (or to the last quarter of the 10th century) up to 775/760 BC. This period corresponds to the horizons Eastern Mediterranean II and IIIA (M-OR II-IIIa, Fig. 4).

A situation partially similar to that of Huelva has occurred at Utica, according to the first published results of the Tunisian-Spanish research project. The deposit recovered in the pit 20017 is composed by Phoenician, Greek Geometric, Sardinian, Libyan, Villanovan and Tartessian pottery. As stated by the authors’ analysis, the Phoenician potsherds are in chronological and typological correspondence with the Period II of Tyre - al Bass. The end of the deposit is dated before the end of the 9th century, corresponding with Strata from X/IX to VI of Tyre. The 14C dating and the Greek ceramics complete the chronological framework provided by the Phoenician pottery.

Latest materials of the mixed assemblage of Huelva are comparable with the vessels of the first identified ceramic horizon found at Teatro Cómico of Cádiz (Periodo II)66. In terms of relative chronology, the final moment of Huelva would overlap then with the initial stages of the context of Teatro Cómico of Cádiz and with the phase III of the settlement La Rebana-dilla, near Malaga, the latter being a hypothesis at the present state of the research, because of the lack of published material. Parallels are also detectable with the beginning of the Morro de Mezquitilla sequence (B1a)68 and with part of the recovered material of Calle Canovas del Castillo of Cádiz. For the shared ceramic horizon a final dating to around the first quarter or

62 López Castro et al. (2014); López Castro et al. (2015).
63 López Castro et al. (2016). This paper enriches the knowledge about the archaic pottery of Utica provided by previous publications: Ben Jerbania (2011), 45-50; Ben Jerbania, Redissi (2014).
64 The dating obtained from the seeds found in the pit’s fill indicate a chronology around 925-900 cal BC: López Castro et al. (2016), 81-84.
65 The Greek pottery falls substantially within the repertoire of the Middle Geometric II but there are some elements, such as a skyphos with crosshatched triangles and semi-circular bands, currently not attested in any other wester context: López Castro et al. (2016), 76-77.
66 Cf. note 55.
67 Sánchez Sánchez-Moreno et al. (2011); Sánchez Sánchez-Moreno et al. (2012).
68 Maass Lindemann (1990); Maass Lindemann (2008).

Fig. 4. Huelva, 900 - 775/760 BC.
the first third of the 8th century is suggested: a dating anchored to the conventional chronology of Greek Geometric and to the Stratum IV of Tyre (775 - 760/750 BC).

Although the most recent evidences of the assemblage of Huelva would overlap chronologically with the most archaic vessels of the other contexts mentioned above, the deposit of Huelva is characterized by archaic ceramic types currently not present in any other Western Phoenician settlement. As stated above, a better clarification is impossible because of the conditions of the extraction but also because of the problems posed by the chronology of the Greek pottery. The kind of the assemblage, however, seems to be more clear. Unlike the evidence recently emerged in the archaeological investigations at the Teatro Cómico of Cádiz, at La Rebanadilla or at Utica, the assemblage of Huelva seems to represent a horizon not connected to substantial architectural elements and in which it is not documented, apparently, a ceramic western Phoenician production.

Coming back to the above-mentioned problematics raised by the 14C dating and the chronology of the Greek ceramics, as explained by P. Bernardini, from Huelva as well as from El Carambolo, La Rebanadilla and Utica, currently the most archaic western contexts available with Phoenician evidences, the radiometric dating does not exclude a backdating for the earliest Phoenician presence in the Western Mediterranean. In spite of this, however, the organic samples used for the analysis are in constant association with the Greek Middle Geometric II and Subproto-Geometric III potsherds and with Phoenician ceramics related to Tyre’s Strata VIII-IV. This overall situation, notwithstanding any possible raising of the chronology of the Tyre’s stratigraphy and of the Greek Geometric pottery (especially considering that in the latter case the proposition of revision has been considered with mistrust) recommends an extreme caution.

The colonial ceramic production: the Iberian Peninsula

The active trade witnessed by the materials of the archaic phase of Huelva moves up and partly coincides with the beginning of a permanent Phoenician presence in the western Mediterranean area. That entails the activation of the local ceramic production and the progressive replacement of imported eastern pottery by colonial potters’ products. As well as for the stage discussed in the last paragraph, the chronology of this initial phase is argued.

The 14C dating raises sometimes considerably the traditional chronology of the beginning of the Phoenician westward expansion. This chronological information has been used to redefine ex novo the whole issue. In fact, the evidence of radiocarbon dates suggests that the process must be dated to the 9th century, at least 50 years earlier than conventional chronology (i.e., traditional dating elaborated by the archaeologist based on stratigraphy, typological sequences of local Phoenician ceramics, Greek imports and historical considerations) suggests. The divergences of the outcomes of different dating methods (radiochronology, dendrochronology and conventional chrono-typological schemes) produced significant time gaps, for example when both conventional and radiometric dating systems were employed. At present various scholars deal with this issue, suggesting different solutions to the problem of chronological discrepancy and not coming to univocal conclusions: A. Mederos Martín.

70 Giardino (in press).
71 The hypothesis of the possible provenance from Tyre is based only on an optical similarity and not on archaeometric analysis: González de Canales Cerisola et al. (2006), 15-16.
72 Bernardini (2016), 4-6.
73 Mederos Martín (2005).
dates the earlier foundation in Spain back in the second half of the 10th century, M.E. Aubet74 to the 9th century, M. Torres Ortiz75 to the beginning of the last quarter of the 9th century and P.V. Castro Martínez to circa 900 BC76. Among those reckoning the outcomes of radiocarbon dating method reliable, some have evaluated the necessity of a re-examination of the absolute chronology of Greek Geometric pottery. Proposals to raise the dates of the Geometric style have been advanced77. But regarding this suggestion, the doubts raised about some radiometric results make necessary to approach it with caution: the quality of some contexts at the present stage of archaeological knowledge would not permit to argue for a higher absolute Greek Geometric chronology. The case of Carthage represents one of the best examples of the issues discussed just above: the different dating methods of the radiochronology and of conventional chrono-typological schemes, to which the testimonies of ancient texts are added, are combined for the study of the site78.

The on-going excavations keep on providing new evidences and some key sites of Phoenician expansion such as Carthage29, Utica30, Motya31, and Sulcis32 for the Central Mediterranean area and Cádiz (Teatro Cómico, Calle Ancha, Casa del Obispo)83 for Spain already demonstrate a stable Phoenician presence towards the end of the 9th or the first quarter of the 8th century, according to the conventional dating. Even though the new discoveries raise the dating of the western foundations, the average time intervals obtained through radiocarbon dating is not always consistent with the outcome of dating based on the archaeological contexts; thus sometimes the ‘time gap’ persists84. The latest evidences from Bir Massouda site at Carthage seem however to partially bridge the gap85.

74 Aubet (1994), 321-323.
75 Torres Ortiz (2008a).
76 Castro Martínez (1994), 144.
77 Cf., for example, Mederos Martín (2005); Brandherm (2008); Nijboer, van der Plicht (2008); van der Plicht \textit{et al}. (2009).
78 The \(^{14}\)C determinations obtained from cattle bones of the lowest layers, Phases I and II, uncovered in the excavations of Hamburg University below the Decumanus Maximus have provided a dating to the second half of the 9th century. Notwithstanding that some of these analysed samples could not be associated to local or imported materials, certain scholars suggested a correction of the chronology of the Greek Geometric period: Nijboer, van der Plicht (2008). According to the authors of the analysis, the \(^{14}\)C dates of Carthage are consistent with its historical foundation, which is 814/813 BC, and together with radiocarbon dating contributions of other 8 sites (in Israel, Sinai - Egypt, Jordan, Spain, and Italy), they "support a ‘high chronology' for the Iron Age in each respective area of the Mediterranean region". Furthermore, again quoting the authors, the "Huelva and Carthage \(^{14}\)C dates are a clear indication that Phoenician contacts with cultures in the western Mediterranean...start probably during the first half of the 9th century BCE": van der Plicht \textit{et al}. (2009). Concerning this radiometric data, nevertheless, the reliability is being challenged by the problems of contextualization because of their secondary stratigraphic position: Botto (2004-2005), 286-288.
79 Vegas [ed.] (2002); Docter \textit{et al}. (2008).
80 López Castro \textit{et al}. (2016).
81 Nigro (2013); Nigro (2016); Nigro, Spagnoli (2017).
82 Bartoloni (2005); Bartoloni (2008); Bartoloni (2010); Pompianu (2010); Guirguis (2012); Guirguis, Unali (2016).
84 This is the case, for example, of Lixus where the radiocarbon determinations (however suffering from the plateau effect) are in association with pottery conventionally dated to the second half of the 8th century: Álvarez, Gómez Bellard (2005); Torres Ortiz (2008a), 141.
85 Recently the excavations have yielded new radiocarbon dates from the lowest layers that appear to be slightly younger than the radiocarbon results from the Hamburg excavations. Particularly relevant are the de-
Coming back to the analysis of the material culture, by an Iberian Peninsula overview on open forms of the Phoenician repertoire, different chrono-typological horizons are recognized: they mark the diachronic development from the early stages, in continuity with the eastern tradition, until the final outcomes of an independent and original colonial production.

Rare potsherds are part of the first chrono-typological horizon, namely Iberian Peninsula I (PEN-IB I, Fig. 5): they come from Morro de Mezquitilla and Castillo de Doña Blanca and include: plates with horizontal or inclined inward and distinguished outside from the basin or drooping rim, some of which are shaped with a light carination under the rim and concave basin, no longer attested in the second half of the 8th century; two imported bowls with shallow basin and flaring rim, signally carinated; other bowls globular, with plain straight-sided flaring profile, carinated with straight profile and triangular rim or with curvilinear profile. The framework of this archaic stage is now enriched by the more or less contemporary potsherds recently brought to light at the Teatro Cómico of Cádiz (Periodo II). They confirm the presence of the same ceramic types. In terms of relative chronology this phase corresponds to the beginning of the sequence of Morro de Mezquitilla (B1a), of Castillo de Doña Blanca (although for the latter site, published archaic materials are lacking) as well as to part of the phase II of the Teatro Cómico and, probably, of part of the sequences of Calle Canovas del Castillo of Cádiz and La Rebanadilla (III-II). This pottery horizon compares favourably with the important Phoenician ceramics recovered in the lower layers of the Bir Massouda sequence, at Carthage, especially in the Strata BM04/4461 and 4460.

In terms of absolute chronology, it can be proposed for these materials a collocation between 800/775 and 760/750 BC, based on the comparison with eastern repertoires (M-OR IIA).

Other three chrono-typological horizons follow: the documentation in this case is more copious, the Phoenician foundations being more numerous.

The second chrono-typological horizon, namely Iberian Peninsula II (PEN-IB II, fig. 6), dates to the second half of the 8th century. The documentation is well reflected in the short stratigraphic sequence of Las Chorreras or by the evidences from Morro de Mezquitilla II / B1b1 and Castillo de Doña Blanca. Among the vessels in use in this period there are plates...
Phoenician ceramic tableware between East and West

with horizontal, inclined inward or drooping rim98 together with the first attestations with large rim99. Concerning the bowls the variants increase for the typologies already known in the earlier phase100; some innovations are represented by the subtype with plain incurving rim or with curvilinear carination102.

The third horizon chrono-typological, namely Iberian Peninsula III (PEN-IB III, Fig. 7), can be dated to the first half of the 7th century. Its beginning corresponds to the abandonment of the settlement of Las Chorreras and the evidences are given now especially by the settlements of Cerro del Villar (VII-VI) and Toscanos (IV). To the variants already known still in

98 Subtypes 1.2.1, 1.2.3-1.2.4.
99 Subtypes 1.3.1-1.3.2.
100 Subtypes 3.3.1-3.3.3, 3.4.1-3.4.2, 3.7.2-3.7.4, 3.8.4, 3.8.6, 3.8.8-3.8.9.
101 Subtype 3.3.3.
102 Subtype 3.9.1.
use new ones are added concerning the plate with large rim and the globular bowls, the bowls plain straight-sided flaring profile and those carinated with curvilinear profile.

Between the second half of the 7th and the late 6th century the fourth and final chronologically horizon identified is enclosed, namely Iberian Peninsula IV (PEN-IB IV, Fig. 8). Trayamar fits among the key settlements for observing developments in the ceramic reper-

Subtypes 3.3.1, 3.3.3, 3.4.2, 3.5.3, 3.7.2-3.7.4, 3.8.8-3.8.9.

Subtype 3.3.3.

Subtype 3.3.5.

Subtype 3.4.4.

Subtypes 3.8.5, 3.8.7.
Phoenician ceramic tableware between East and West

toire. The plates with very large rim (1.5.0) are the most important innovation of this period108; they gradually replace most of the preceding productions of Levantine tradition. For the bowls the appearance of the variants with hemispherical profile for the globular bowls109 and with triangular rim for those with curvilinear carination110 occurs and many types continue to be attested111.

Through the examination of the findings, a continuity with the production of the Phoenician motherland can be perceived in open forms of the ceramic tableware, even if already from the earliest stages of the Phoenician expansion in the West and, more precisely, from the third quarter or the last twenty-five years of the 8th century, the elaborations have been joined by elements of regional originality. One can detect this behaviour in the repertoires of other Phoenician settlements, such as, for example, Carthage: on one hand, the ceramic production is strongly linked to the Eastern tradition, on the other hand, it is receptive to the innovations of the local contexts of the western Mediterranean Sea. The remains of the Huelva assemblage stand out the resemblance with the pottery of Tyre, in particular of the Strata X-IV, so strong that many of them may have been imported from the Phoenician metropolis and not produced on place112. The nature of the material seems to testify to the presence of a trade settlement113 well developed but distant from the following organization of the settlements. During the second half of the 8th century radical changes occurred altering the physiognomy of the oriental presence in the Iberian Peninsula, as in general in the Mediterranean Sea: a previous mostly commercial attendance is transformed into a stable presence of Phoenician population. The pottery production of the circuit of the foundations, that prosper quickly, introduces the original characters. The regional diversification of the repertoire is accentuated during the 7th century, creating a gap between the productions coming from the different areas of the Mediterranean basin achieved by the Phoenician expansion114.

108 Types 1.2.0-1.3.0. For a detailed study on the new elaboration (1.5.0): Bartoloni (1996); Giardino (2013), 82, n. 37; Giardino (2015), 55, n. 21.

109 Subtype 3.3.4.

110 Subtype 3.9.2.

111 3.3.1, 3.3.3, 3.3.5, 3.4.1-3.4.2, 3.4.4, 3.5.3, 3.7.2-3.7.3, 3.8.5-3.8.9.

112 Cf. note 71.

114 I would like to thank the anonymous reviewers of this paper for their suggestions and comments.
Bibliographical references

Anderson W.P. (1988), **Sarepta I. The Late Bronze and Iron Age Strata of Area II, Y. The University Museum of the University of Pennsylvania Excavations at Sarafand, Lebanon**, Beyrouth : Département des publications de l’Université Libanaise.

Ben Jerbania I., Redissi T. (2014), **Utique et la Méditerranée centrale à la fin du IXe et au VIIIe s.a.e.: les eishegement de la céramique greche géométrique, Rivista di Studi Fenici**, 42, 177-204.

Brandtchm D. (2008), Greek and Phoenician potsherds between East and West: a chronological dilemma?, in **A New Dawn for the Dark Age? Shifting Paradigms in Mediterranean Iron Age Chronology = L%=«%e obscur se fait-il jour

Sara Giardino
Phoenician ceramic tableware between East and West

Mederos Martín A. (2006), Fenicios en Huelva, en el siglo X, durante el reinado de Hirám de Tiro. Phoenicians in Huelva in the Xth century BC, during the reign of Hirám of Tyre, SPAL: Revista de prehistoria y arqueología de la Universidad de Sevilla, 15, 167-188.

Mederos Martín A. (2013), La cronología de Huelva fenicia, in Fenicios e púnicos, por terra e mar: Actas del VI Congreso Internacional de Estudios Fenicios y Púnicos (Facultad de Letras da Universidade de Lisboa, 25 de Setembro a 1 de Outubro de 2005), Arruda A.M. [ed.], Lisboa: Universidade, Centro de Arqueología (=Estudos e memórias (UNIARQ), 5-6), 482-495.

Phoenician ceramic tableware between East and West

Nijboer A.J., van der Plicht J. (2008), The Iron Age in the Mediterranean: recent radiocarbon research at the University of Groningen, in A New Dawn for the Dark Age, 102-118.

Núñez Calvo F.J. (2008), Western challenges to East Mediterranean chronological frameworks, in A New Dawn for the Dark Age, 3-27.

Torres Ortiz M. (2008a), The chronology of the Late Bronze Age in Western Iberia and the beginning of the Phoenician colonization in the Western Mediterranean, in A New Dawn for the Dark Age, 135-147.

Torres Ortiz M. (2008b), Los “tiempos” de la precolonización, in Contacto cultural entre el Mediterráneo y el Atlántico (siglos XII-VII a.e.): la precolonización a debate, Celestino Pérez S., Rafel i Fontanals N., Armada Pita X.-L.
Sara Giardino

[eds], Madrid : Consejo Superior de Investigaciones Científicas (=Escuela Española de Historia y Arqueología (Rome, Italy); Serie arqueológica, 11), 59-91.

Phoenician ceramic tableware between East and West

Riassunto /Abstract

Abstract: In this paper a typological and chronological framework of the evolution of open forms of the Phoenician table pottery is outlined, starting from the Iron Age documentation of the Syro-Palestinian coast (11th-6th centuries BC) up to the colonial elaborations of the Iberian Peninsula (9th-6th centuries BC). The definition of the chrono-typological horizons identified in both areas is combined with an analysis of the issues affecting the absolute chronology of the Iron Age in the Mediterranean basin. The focus is on the early stages of the Phoenician presence in West, given the increasing number of archaic evidences emerged notably at Huelva and Cádiz. The analysis is also carried out through the comparison with other archaic contexts recently come to light, for example, at Utica and Cartage.

Parole chiave: Ceramica fenicia, cronologia, datazioni C14, costa siro-palestinese, Penisola Iberica

Keywords: Phoenician Pottery, chronology, 14C dating, Syro-Palestinian coast, Iberian Peninsula.

Come citare questo articolo / How to cite this paper
